Package: surbayes 0.1.2

Ethan Alt

surbayes: Bayesian Analysis of Seemingly Unrelated Regression Models

Implementation of the direct Monte Carlo approach of Zellner and Ando (2010) <doi:10.1016/j.jeconom.2010.04.005> to sample from posterior of Seemingly Unrelated Regression (SUR) models. In addition, a Gibbs sampler is implemented that allows the user to analyze SUR models using the power prior.

Authors:Ethan Alt

surbayes_0.1.2.tar.gz
surbayes_0.1.2.zip(r-4.5)surbayes_0.1.2.zip(r-4.4)surbayes_0.1.2.zip(r-4.3)
surbayes_0.1.2.tgz(r-4.4-x86_64)surbayes_0.1.2.tgz(r-4.4-arm64)surbayes_0.1.2.tgz(r-4.3-x86_64)surbayes_0.1.2.tgz(r-4.3-arm64)
surbayes_0.1.2.tar.gz(r-4.5-noble)surbayes_0.1.2.tar.gz(r-4.4-noble)
surbayes_0.1.2.tgz(r-4.4-emscripten)surbayes_0.1.2.tgz(r-4.3-emscripten)
surbayes.pdf |surbayes.html
surbayes/json (API)
NEWS

# Install 'surbayes' in R:
install.packages('surbayes', repos = c('https://ethan-alt.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ethan-alt/surbayes/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

2.70 score 1 scripts 124 downloads 3 exports 9 dependencies

Last updated 4 years agofrom:293a6ad283. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-win-x86_64NOTENov 05 2024
R-4.5-linux-x86_64NOTENov 05 2024
R-4.4-win-x86_64NOTENov 05 2024
R-4.4-mac-x86_64NOTENov 05 2024
R-4.4-mac-aarch64NOTENov 05 2024
R-4.3-win-x86_64NOTENov 05 2024
R-4.3-mac-x86_64NOTENov 05 2024
R-4.3-mac-aarch64NOTENov 05 2024

Exports:sur_samplesur_sample_dmcsur_sample_powerprior

Dependencies:data.tablejsonlitelatticeMatrixRcppRcppArmadillorlistXMLyaml